Maximum power processes for multi-source endoreversible heat engines

نویسندگان

  • S A Amelkin
  • B Andresen
  • J M Burzler
  • K H Hoffmann
  • M Tsirlin
چکیده

The maximum power processes of multi-source endoreversible engines with stationary temperature reservoirs are investigated. We prove that the optimal solution is always time independent with a single hot and a cold engine contact temperature. The heat reservoirs fall into three groups: the hot reservoirs which are connected at all times for heat delivery, the cold reservoirs which are connected at all times for heat drain, and possibly a group of reservoirs at intermediate temperatures which are unused. This phenomenon is demonstrated for a three-source system. We find that for a commonly used class of heat transfer functions, including Newtonian, Fourier, and radiative heat transport, the efficiencies at maximum power are the same as for two-reservoir engines with appropriately chosen properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines

The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate...

متن کامل

Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine

In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will show in this paper that the approach detailed in a previous paper [1] can be used to analytically model irreversible heat engines (with an add...

متن کامل

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature hs T ) and a heat sink (at temperature cs T ). The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for mod...

متن کامل

Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the ...

متن کامل

Efficiency at maximum power: An analytically solvable model for stochastic heat engines

We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004